
SWEN-261
Introduction to Software 
Engineering
Department of Software Engineering
Rochester Institute of Technology

CI/CD Basics & Code Coverage



What is a CI/CD Pipeline?

§ Continuous Integration/Continuous Delivery (CI/CD) pipelines is a practice 
focused on improving software delivery using a DevOps approach.
• It is a series of steps that must be performed in order to deliver a new version of 

software. 

§ Although it is possible to manually execute each of the steps of a CI/CD 
pipeline, the true value of CI/CD pipelines is realized through automation

2

Build
Version
Control

Unit
Test

Deploy
Auto
Test

Deploy to 
Production



What is a CI/CD Pipeline?

§ Continuous Integration is development practice where developers integrate 
all code into a shared repository, frequently.
• Once code is merged, the automated build is ready to be verified and tested

§ Continuous Delivery executes after Continuous Integration steps have 
successfully completed
• Application is built and deployed to a pre-production environment where additional 

automated testing and/or Acceptance Testing is conducted before deploying to 
production3

BuildVersion
Control

Unit
Test

Deploy Auto
Test

Deploy to 
Production

Continuous Integration

Continuous Delivery



How good is our Unit Testing?

§ We have been running our unit tests but how do we know how well they 
test all of our code?
• Do the unit tests execute across a broad area of code or are they simply testing the 

same methods and ignoring others?

§ If we are using a CI/CD Pipeline, what if we wanted to impose a certain level 
of code coverage in our Continuous Integration before we run continue with 
Continuous Delivery?

§ We need a Code Coverage tool!

4



Code coverage analysis is measuring how well your unit tests 
exercise the production code.
§ Code coverage works like this:

1. Compile the project into bytecode
2. Instrument the bytecode with "touch points"
3. Run the unit tests, which gathers coverage data
4. Generate a coverage report from the gathered data

§ There are a few Java coverage tools.
• Your project will use JaCoCo
• It integrates well with Maven

§ Having this information is a double-edge sword.
• It's mostly a positive thing; telling the team where to spend additional testing effort.
• But don't be obsessed with the metrics; we'll talk more about this later.

5



JaCoCo's coverage report is a simple HTML web site that lets you 
drill down for more information.
§ The report is stored in /target/site/jacoco.

6

Missed Instructions provides 
information about the amount of code 

that has been executed or missed

Missed Branches indicates 
branch coverage for 

all if and switch statements

Controller tier

Top tier

Class-level



It's at the class-level where you can start a meaningful analysis.

7

Color Legend
Green à covered
Yellow à partially covered
Red à not covered

§ This GuessGame code had 97% 
coverage. So, what do you do?

§ On the one hand:
• That's REALLY good already.
• The only missing test is a defensive 

check so maybe say "that's good 
enough."

§ On the other hand:
• This is a core Model tier class.
• We want these to be "friendly" test 

dependencies.
• So maybe the team agrees to make 

this 100% covered.

§ What tests need to be added?



There needs to be a test to check making an invalid guess.

§ Here's a test:

@Test
public void make_an_invalid_guess() {

final GuessGame CuT = new GuessGame();
assertEquals(CuT.makeGuess(TOO_SMALL), GuessResult.INVALID);
assertFalse(CuT.isFinished(), "Game is not finished");

}

§ Here's the updated analysis:

8

This line is tested but only 
through this part of the branch.

We need to test the second 
part of the branch.



If we test that second branch, we should be there.

§ Here's a test of a guess that is too big:
@Test
public void make_an_invalid_guess_too_big() {

final GuessGame CuT = new GuessGame();
assertEquals(CuT.makeGuess(TOO_BIG), GuessResult.INVALID);
assertFalse(CuT.isFinished(), "Game is not finished");

}

§ Here's the updated analysis:

§ Now the Model tier is fully tested!

9



Deciding what level of coverage depends upon several factors…

§ Some components (Model tier) are used across multiple other architectural 
tiers.
• We recommend 95% or better for Model tier.

§ Others are only used by the REST API.
• We recommend 90% or better in all other tiers.

§ Other factors:
• Team and company culture
• Application domain
w Regulatory requirements may specify testing requirements.
w Those defensive checks may be safety checks. You can not know if the system is safe if you 

do not test the checks.

10



The coverage data is cumulative across all tests which may make 
results look better than they are.
§ You want to gather coverage data from unit tests of a class not use of the 

class by tests of other classes.
• The ultimate is to test one class at a time which is not reasonable.
• A reasonable compromise is measure code coverage for testing one tier at a time.

§ The JUnit framework and build tools allow that.
•@Tag("name") each test file to place it into a tier category. Use Model-tier, 
Controller-tier, etc.

• Reset the coverage data after each tier 
is tested and generate the report in a 
separate location.

11



Your project's pom.xml file has several test execution ids defined.

§ Clean the target directory, and run all three tier-based tests
•mvn clean test
• The reports are in /target/site/jacoco/tier/index.html where tier

contains the coverage report for that specific tier

§ We can also run a check to ensure our coverage has not dropped
•mvn clean verify

12

Code coverage target set to 
90%, yet we are only at 76%


